EXIT Charts

JASS05 –Course 4: "The Turbo Principle in Communications" Prof. Dr.-Ing. Joachim Hagenauer

Presented by: Yipeng Liu 4.4.2005, St. Petersburg

Overview

- > Why EXIT Charts?
- How EXIT Charts work?
- How to draw EXIT Charts?
- > Where to use EXIT Charts?
- Summary and Outlook

Why Extrinsic Information Transfer Chart?

The problem with Bit Error Rate Chart when iteratively decoding

(Stephen ten Brink, "Convergence Behavior of Iteratively Decoded Parallel Concatenated Codes", IEEE Trans. Comm.Oct.2001)

How EXIT Charts look like?

SNR=3dB, outer code rate 0.5 [13,15] SNR=3dB, inner code rate 0.5 [7,5]

The invention of EXIT Charts

- The exchange of extrinsic information is visualized as a decoding trajectory in EXIT Charts
- A powerful tool to visualize the convergence behavior of iterative decoding algorithms
- > Good performance in $low E_b/N_0$ & turbo cliff region
- It provides guidance on designing good codes

How to draw EXIT Charts?

Ingredients we need:

Mutual information

- Mutual information Transfer characteristics of iterative decoders
- Combination of transfer characteristics

Mutual information and Channel capacity

Mutual information I(X;Y) = H(Y) - H(Y|X)

$$I(X;Y) = \iint f(x,y) \log \frac{f(x,y)}{f(x)f(y)} dxdy$$

where

$$H(Y|X) = \iint f(x, y) \log \frac{1}{f(y|x)} dx dy$$

Channel Capacity

$$C = \max_{p_x} I(X;Y)$$

(Claude E. Shannon, "A Mathematical Theory of Communications"1948)

Why Mutual information as the parameter?

Benefits of mutual information in EXIT Charts:

> The information-theoretic interpretation

The value range and logarithmic scaling

Robustness of the shape

> An interesting fact is the area property

Iterative decoder used in parallel Concatenated Codes

 $E_1(D_1 - Z_1 - A_1) \rightarrow A_2$

 $E_2(D_2 - Z_2 - A_2) \rightarrow A_1$

(Stephen ten Brink, "Convergence Behavior of Iteratively Decoded Parallel

Concatenated Codes", IEEE Trans. Comm.Oct.2001)

Transfer characteristics

- ➢ Iterative decoders exchange message between extrinsic and a priori $E_1 → A_2, E_2 → A_1$
- > Tracking of messages depends only on mutual information $I(L_E; X), I(L_A; X)$
- > Some parameters, influencing the transfer characteristic curves (number of code memory, depth of interleaving, different code polynomials and E_b/N_0)

Transfer characteristics (cont.)

(Stephen ten Brink, "Convergence Behavior of Iteratively Decoded Parallel Concatenated Codes", IEEE Trans. Comm.Oct.2001)

A Simple Example on Transfer Characteristics

SNR=3dB, outer code rate 0.5, [13,15] SNR=3dB, inner code rate 0.5, [7,5]

Combination of transfer characteristics

Combination of two transfer characteristics engenders EXIT Charts

Trajectory of iterative decoding

пπ

Exit Charts Features

For $E_b/N_0 = 0.1 dB$ Decoding trajectory got stuck early

For $E_b/N_0 = 0.8dB$ Decoding trajectory just "sneak through the bottleneck"

(Stephen ten Brink, "Convergence Behavior of Iteratively Decoded Parallel Concatenated Codes", IEEE Trans. Comm.Oct.2001)

Compare EXIT Charts with BER Charts

Pinch-off region, trajectory got stuck at low mutual information

Turbo cliff region is bottleneck region with slow convergence

BER floor region is the wide-open region with fast convergence

(Stephen ten Brink, "Convergence Behavior of Iteratively Decoded Parallel Concatenated Codes", IEEE Trans. Comm.Oct.2001)

Iterative decoder used in serial Concatenated Codes

(J.Hagenauer, "The EXIT Chart- Introduction to Extrinsic Information Transfer in Iterative Processing", EUSIPCO 2004)

Simplified Calculation of Mutual Information in serial concatenated structure

- > Two conditions to simplify:
- 1. Probability density function is Symmetric

$$p(-y|x=+1) = p(y|x=-1)$$

2. Consistency condition

$$p(-y|x) = e^{-L_c x y} p(y|x)$$

Simplify the calculation of mutual information

$$I(L;X) = 1 - \int_{-\infty}^{+\infty} p(L|x = +1) \log_2(1 + e^{-L}) dL$$

= $1 - E\{\log_2(1 + e^{-L}) dL\}$
 $p(L|x = +1) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(L - x\sigma^2/2)^2/2\sigma^2}$

Measurement of EXIT Charts

Output of lower branch \longrightarrow horizontal axis Output of upper branch \longrightarrow vertical axis

(J.Hagenauer, "The EXIT Chart- Introduction to Extrinsic Information Transfer in Iterative Processing", EUSIPCO 2004)

Area Property of EXIT Charts

(J.Hagenauer, "The EXIT Chart- Introduction to Extrinsic Information Transfer in Iterative Processing", EUSIPCO 2004) Rate- Capacity properties for serial concatenated schemes $\int_{0}^{1} T_{II}(i) di \approx C_{ui}$ $\int_{0}^{1} T_{I}^{-1}(i) di \approx R_{I}$ $\int_{0}^{1} \left(T_{II}(i) - T_{I}^{-1}(i) \right) di > 0 \Longrightarrow R_{I} < C_{ui}$

Code rate of outer code should be smaller than the capacity of inner channel

Code design is reduced to curve fitting

Simple example of EXIT Charts

(J.Hagenauer, "The EXIT Chart- Introduction to Extrinsic Information Transfer in Iterative Processing", EUSIPCO 2004) Simple Single Parity Check (SSPC) Codes

Serial concatenation with a DPSK modulator as inner code and an outer code M=2 convolutional code, R=1/2 at $E_b/N_0 = 1.5 dB$

Trajectory slightly differs from Two EXIT curves due to limited depth of interleaver

Application of EXIT Charts

(J.Hagenauer, "The EXIT Chart- Introduction to Extrinsic Information Transfer in Iterative Processing", EUSIPCO 2004) Multipath transmission as inner code

7 convolutional code as outer codes

Irregular codes perform good

Conclusion and Outlook

- Based on mutual information to visualize the decoding trajectory of iterative decoding
- Came out of parallel concatenated structure and can be applied to serial concatenated structure
- It gives us some hints on designing good codes
- It can be utilized in a variety of fields (Irregular codes, LDPC, etc.)

Thank you for your attention! Questions & Discussions

